Moteur servo industriel 200V Yaskawa fait dans le moteur servo SGMAH-04ABA21 du Japon 400W
DÉTAILS RAPIDES
Modèle SGMAH-04ABA21
Type de produit moteur servo à C.A.
Sortie évaluée 400w
Couple évalué 1,27 nanomètre
Vitesse nominale 3000RPM
Tension d'alimentation électrique 200vAC
2.8Amps actuel évalué
D'AUTRES PRODUITS SUPÉRIEURS
Moteur de Yasakawa, SG de conducteur | Moteur HC-, ha de Mitsubishi |
Modules 1C-, 5X- de Westinghouse | Emerson VE, kJ |
Comité technique de Honeywell, TK | Modules IC de GE - |
Moteur A0- de Fanuc | Émetteur EJA- de Yokogawa |
Produits semblables
SGMAH-04AAAHB61 |
SGMAH-04ABA21 |
SGMAH-04ABA41 |
SGMAH-04ABA-ND11 |
SGMAH-07ABA-NT12 |
SGMAH-08A1A21 |
SGMAH-08A1A2C |
SGMAH-08A1A61D-0Y |
SGMAH-08A1A6C |
SGMAH-08A1A-DH21 |
SGMAH-08AAA21 |
SGMAH-08AAA21+ SGDM-08ADA |
SGMAH-08AAA2C |
SGMAH-08AAA41 |
SGMAH-08AAA41+ SGDM-08ADA |
SGMAH-08AAA41-Y1 |
SGMAH-08AAA4C |
SGMAH-08AAAH761 |
SGMAH-08AAAHB61 |
SGMAH-08AAAHC6B |
SGMAH-08AAAYU41 |
SGMAH-08AAF4C |
SGMAH-A3A1A21 |
SGMAH-A3A1A21+SGDM-A3ADA |
SGMAH-A3A1A41 |
SGMAH-A3A1AJ361 |
SGMAH-A3AAA21 |
SGMAH-A3AAA21-SY11 |
SGMAH-A3AAA2S |
SGMAH-A3AAAH761 |
SGMAH-A3AAA-SY11 |
SGMAH-A3AAA-YB11 |
SGMAH-A3B1A41 |
SGMAH-A3BAA21 |
SGMAH-A3BBAG761 |
SGMAH-A5A1A-AD11 |
SGMAH-A5A1AJ721 |
SGMAH-A5A1A-YB11 |
SGMAH-A5A1A-YR61 |
Un servo de type 1 a un intégrateur (moteur) en tant qu'élément de l'amplificateur, ainsi le terme d'A prend le ∠- de la forme (KI/ω)
90° comme évoqué dans précédemment. Comme augmentations de fréquence (ω), les diminutions de gain. Comme fréquence
diminutions, les augmentations de gain et ∞ d'approches quand approches 0 de ω.
En état équilibré, l'erreur (e) doit approcher 0 depuis le ∞ d'approches du gain (a). Le résultat de
1,00 une » commande d'étape serait un résultat final de 1,00 » et une erreur de 0".
Si la commande d'entrée est une rampe en position (vitesse constante), la sortie sera une rampe en position de
avec précision la même valeur (vitesse), mais a traîné en position. C'est vrai parce qu'un moteur ou un intégrateur met
une rampe de position (ou la vitesse) avec une erreur constante (tension) s'est appliquée à elle. Dans l'équilibré (ensuite
l'accélération est plus de) la position réelle (f) traînera la commande (c) par l'erreur (e), mais les vitesses
(pente de rampe) de C et F soyez identique.
Les ordres d'excitation pour les modes ci-dessus d'entraînement sont récapitulés dans le tableau 1.
Dans la commande de Microstepping les courants dans les enroulements varient sans interruption pour pouvoir diviser une pleine étape en beaucoup de plus petites étapes discrètes. Plus d'information sur microstepping peut être
trouvé dans le chapitre microstepping. Serrez à la clé dynamométrique contre, pêchez les caractéristiques
Le couple contre des caractéristiques d'angle d'un moteur pas à pas sont les relations entre le déplacement du rotor et le couple qui ont appliqué à l'arbre de rotor quand le moteur pas à pas active à sa tension évaluée. Un moteur pas à pas idéal a un couple sinusoïdal contre la caractéristique de déplacement suivant les indications du schéma 8.
Les positions A et C représentent les points d'équilibre stables quand aucune force externe ou charge n'est appliquée au rotor
axe. Quand vous appliquez une force externe merci à l'axe de moteur que vous créez essentiellement un écart angulaire, Θa
. Cet écart angulaire, Θa, désigné sous le nom d'une avance ou traînent angle selon si le moteur est activement accélérant ou ralentissant. Quand le rotor s'arrête avec une charge appliquée il viendra pour se reposer à la position définie par cet angle de déplacement. Le moteur développe un couple, merci, en opposition à la force externe appliquée afin d'équilibrer la charge. À mesure que la charge est augmentée l'angle de déplacement augmente également jusqu'à ce qu'il atteigne le maximum tenant le couple, Th, du moteur. Une fois que le Th est dépassé le moteur écrit une région instable. Dans cette région qu'un couple est la direction opposée est créé et les sauts de rotor au-dessus du point instable au prochain point stable.
MOTEUR SLIP
Le rotor dans un moteur à induction ne peut pas tourner à la vitesse synchrone.
incitez un EMF dans le rotor, le rotor doit déplacer plus lent que les solides solubles. Si le rotor étaient à
d”une certaine manière le tour aux solides solubles, l'EMF n'a pas pu être induit dans le rotor et donc le rotor
s'arrêterait. Cependant, si le rotor s'arrêtait ou même s'il ralentissait de manière significative, un EMF
soyez induit de nouveau dans les barres de rotor et il commencerait à tourner à une vitesse moins
que les solides solubles.
Les relations entre la vitesse de rotor et les solides solubles s'appellent le glissement. Typiquement,
Le glissement est exprimé en pourcentage des solides solubles. L'équation pour le glissement de moteur est :
2 % S = (SOLIDES SOLUBLES – RS) X100
Solides solubles
Où :
%S = glissement de pour cent
Solides solubles = vitesse synchrone (T/MN)
RS = vitesse de rotor (T/MN)