

Add to Cart
Résistance résiduelle rapide de résistance thermique de la réponse
22D15 NTC de bonne stabilité petite
Principe :
Le principe de la température de mesure avec une thermistance est
que ses changements de résistance avec la température. La plupart
des thermistances diffèrent des résistances ordinaires c'est--dire
qu'elles ont une résistivité négative, signifiant que des
diminutions de résistance comme augmentations de la température.
Les thermistances du négatif (NTC) sont plus communes, bien que les
thermistances (ptc) positives puissent être utilisées.
Matériel, type et taille :
Les thermistances sont des dispositifs de semiconducteur amorphe et
car tels peuvent être fabriqués sous un grand choix de formes. Les
plus communs incluent des disques, des perles et des tiges. Les
tailles varient des perles de 1mm aux disques quelques centimètres
de diamètre et l'épaisseur.
Il y a différents types de thermistances, plus dont répondez
différemment aux changements de la température. Les thermistances
ne sont pas linéaires et leurs courbes de réponse varient du type
pour dactylographier. Quelques thermistances ont des relations
presque linéaires de température-résistance, d'autres ont un
changement pointu de pente (sensibilité) une température
caractéristique spécifique.
Le principal avantage
La caractéristique principale d'une thermistance est sa sensibilité
élevée. Son coefficient de température de résistance est 10-100
fois qui du métal. Il peut détecter des changements de température
de 10-6°C ; la température ambiante fonctionnante est large, le
dispositif normal de la température convient -55°C | 315°C, le
dispositif hautes températures convient aux températures au-dessus
de 315°C (avant 2000 le °C), et du dispositif de basse température
convient pour 273°C | 55°C ; la petite taille, peut mesurer la
température des vides, des cavités et des vaisseaux sanguins au
corps humain, qui ne peut pas être mesuré par d'autres thermomètres
; facile utiliser, la valeur de résistance est de l'ordre de 0,1 |
100kΩ ; tout choix entre eux ; facile transformer en forme
complexe, production en série ; bonne stabilité, capacité de
surcharge forte.
Applications :
Peut être installé sur les circuits de puissance de :
• Alimentations et inverseurs d'énergie
• Alimentations d'énergie non interruptible
• Lampes économiseuses d'énergie
• Ballasts électroniques
• Protection de filament de divers types de lampes
• Quelques types d'appareils de chauffage
• Pour une puissance plus élevée les circuits s'enquièrent du MF73
et dispositifs antiparasites de montée subite de la série MF74.
modèle | Puissance nulle évaluée | Max.steady Courant d'état (A) | Résiduel Résistance (Ω) | B25/85 (k) | Temps de Themal Constantes | Dissipation |
1.3D-13 | 1,3 | 7 | 0,089 | 2700 | ≤70 | ≥13 |
1.5D-13 | 1,5 | 7 | 0,089 | 2700 | ||
2.5D-13 | 2,5 | 6 | 0,108 | 2700 | ||
3D-13 | 3 | 6 | 0,145 | 2700 | ||
4D-13 | 4 | 5 | 0,146 | 2700 | ||
4.7D-13 | 4,7 | 5 | 0,147 | 2800 | ||
5D-13 | 5 | 5 | 0,15 | 2800 | ||
6D-13 | 6 | 4 | 0,211 | 2800 | ||
6.8D-13 | 6,8 | 4 | 0,228 | 3000 | ||
7D-13 | 7 | 4 | 0,232 | 3000 | ||
8D-13 | 8 | 4 | 0,275 | 3000 | ||
10D-13 | 10 | 4 | 0,272 | 3000 | ||
12D-13 | 12 | 3 | 0,483 | 3000 | ||
15D-13 | 15 | 3 | 0,488 | 3100 | ||
16D-13 | 16 | 3 | 0,454 | 3100 | ||
18D-13 | 18 | 3 | 0,511 | 3200 | ||
20D-13 | 20 | 3 | 0,568 | 3200 | ||
22D-13 | 22 | 3 | 0,581 | 3200 | ||
25D-13 | 25 | 2 | 0,625 | 3200 | ||
30D-13 | 30 | 2 | 0,696 | 3200 | ||
33D-13 | 33 | 2 | 0,765 | 3200 | ||
47D-13 | 47 | 2 | 1,091 | 3200 | ||
50D-13 | 50 | 2 | 1,161 | 3200 |
Spécification technique
Diamètre Φ40mm de corps
P/N | R25±20% (Ω) | Index sensible thermique B±10% (K) | Imax actuel équilibré maximum (A) | R approximatif de Rmax actuel maximum (Ω) | Dissipation de puissance maximum Pmax (W) | Constante de temps thermique (mW/C) | Constante de temps thermique (s) | Capacité maximum d'impulsion (uF) 240VAC |
MF73-0.2/50 | 0,2 | 2600 | 50 | 0,007 | 25 | ≥55 | ≤350 | 8000 |
MF73-0.5/40 | 0,5 | 2600 | 40 | 0,008 | 6800 | |||
MF73-3/28 | 3 | 2800 | 28 | 0,02 | 6800 | |||
MF73-5/25 | 5 | 3000 | 25 | 0,028 | 4700 | |||
MF73-8/20 | 8 | 3200 | 20 | 0,034 | 3300 | |||
MF73-10/19 | 10 | 3200 | 19 | 0,038 | 3300 |
Diamètre Φ45mm de corps
P/N | R25±20% (Ω) | Index sensible thermique B±10% (K) | Imax actuel équilibré maximum (A) | R approximatif de Rmax actuel maximum (Ω) | Dissipation de puissance maximum Pmax (W) | Constante de temps thermique (mW/C) | Constante de temps thermique (s) | Capacité maximum d'impulsion (uF) 240VAC |
MF73-0.2/65 | 0,2 | 2600 | 65 | 0,006 | 30 | ≥70 | ≤480 | 11500 |
MF73-0.5/50 | 0,5 | 2600 | 50 | 0,007 | 8000 | |||
MF73-2/40 | 2 | 2600 | 40 | 0,012 | 8000 | |||
MF73-5/30 | 5 | 3000 | 30 | 0,025 | 6800 | |||
MF73-10/24 | 10 | 3200 | 24 | 0,032 | 4700 |
Diamètre Φ50mm de corps
P/N | R25±20% (Ω) | Index sensible thermique B±10% (K) | Imax actuel équilibré maximum (A) | R approximatif de Rmax actuel maximum (Ω) | Dissipation de puissance maximum Pmax (W) | Constante de temps thermique (mW/C) | Constante de temps thermique (s) | Capacité maximum d'impulsion (uF) 240VAC |
MF73-0.2/80 | 0,2 | 2600 | 80 | 0,004 | 36 | ≥90 | ≤650 | 15000 |
MF73-0.5/60 | 0,5 | 2600 | 60 | 0,006 | 11500 | |||
MF73-1/56 | 1 | 2600 | 56 | 0,008 | 11500 | |||
MF73-3/40 | 3 | 2800 | 40 | 0,015 | 11500 | |||
MF73-5/35 | 5 | 3000 | 35 | 0,022 | 8000 | |||
MF73-6.8/32 | 6,8 | 3000 | 32 | 0,025 | 8000 | |||
MF73-10/27 | 10 | 3200 | 27 | 0,03 | 6800 |
Processus de produit